The Segal Bargmann Transform for Path-Groups

نویسندگان

  • Brian C. Hall
  • Ambar N. Sengupta
چکیده

Let K be a connected Lie group of compact type and let W(K ) denote the set of continuous paths in K, starting at the identity and with time-interval [0, 1]. Then W(K ) forms an infinite-dimensional group under the operation of pointwise multiplication. Let \ denote the Wiener measure on W(K ). We construct an analog of the Segal Bargmann transform for W(K ). Let KC be the complexification of K, W(KC) the set of continuous paths in KC starting at the identity, and + the Wiener measure on W(KC). Our transform is a unitary map of L (W(K ), \) onto the ``holomorphic'' subspace of L(W(KC), +). By analogy with the classical transform, our transform is given by convolution with the Wiener measure, followed by analytic continuation. We prove that the transform for W(K ) is nicely related by means of the Itô map to the classical Segal Bargmann transform for the path-space in the Lie algebra of K. 1998 Academic Press

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Segal–bargmann Transform for Noncompact Symmetric Spaces of the Complex Type

We consider the generalized Segal–Bargmann transform, defined in terms of the heat operator, for a noncompact symmetric space of the complex type. For radial functions, we show that the Segal–Bargmann transform is a unitary map onto a certain L space of meromorphic functions. For general functions, we give an inversion formula for the Segal–Bargmann transform, involving integration against an “...

متن کامل

Holomorphic methods in analysis and mathematical physics

Dedicated to my " father " Leonard Gross, and to the memory of my " grandfather " Irving Segal. Contents 1. Introduction 1 2. Basics of holomorphic function spaces 2 3. Examples of holomorphic function spaces 7 4. A special property of the Segal-Bargmann and weighted Bergman spaces 12 5. Canonical commutation relations 16 6. The Segal-Bargmann transform 21 7. Quantum mechanics and quantization ...

متن کامل

ar X iv : q ua nt - p h / 04 09 11 8 v 1 17 S ep 2 00 4 THE SEGAL – BARGMANN TRANSFORM FOR NONCOMPACT SYMMETRIC SPACES OF THE COMPLEX TYPE

We consider the generalized Segal–Bargmann transform, defined in terms of the heat operator, for a noncompact symmetric space of the complex type. For radial functions, we show that the Segal–Bargmann transform is a unitary map onto a certain L space of meromorphic functions. For general functions, we give an inversion formula for the Segal–Bargmann transform, involving integration against an “...

متن کامل

Integral Transform and Segal-Bargmann Representation associated to q-Charlier Polynomials

Let μ (q) p be the q-deformed Poisson measure in the sense of SaitohYoshida [24] and νp be the measure given by Equation (3.6). In this short paper, we introduce the q-deformed analogue of the Segal-Bargmann transform associated with μ (q) p . We prove that our Segal-Bargmann transform is a unitary map of L(μ (q) p ) onto the Hardy space H (νq). Moreover, we give the Segal-Bargmann representati...

متن کامل

. C A ] 3 0 N ov 2 00 1 Integral Transform and Segal - Bargmann Representation associated to q - Charlier Polynomials ∗

Let μ (q) p be the q-deformed Poisson measure in the sense of SaitohYoshida [24] and νp be the measure given by Equation (3.6). In this short paper, we introduce the q-deformed analogue of the Segal-Bargmann transform associated with μ (q) p . We prove that our Segal-Bargmann transform is a unitary map of L(μ (q) p ) onto the q-deformed Hardy spaceH (νq). Moreover, we give the Segal-Bargmann re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998